Generation of highly-polarized high-energy brilliant γ-rays via laser-plasma interaction

2020 
The generation of highly polarized high-energy brilliant γ-rays via laser–plasma interaction is investigated in the quantum radiation-reaction regime. We employ a quantum electrodynamics particle-in-cell code to describe spin-resolved electron dynamics semiclassically and photon emission and polarization quantum mechanically in the local constant field approximation. As an ultrastrong linearly polarized (LP) laser pulse irradiates a near-critical-density (NCD) plasma followed by an ultrathin planar aluminum target, the electrons in the NCD plasma are first accelerated by the driving laser to ultrarelativistic energies and then collide head-on with the laser pulse reflected by the aluminum target, emitting brilliant LP γ-rays via nonlinear Compton scattering with an average polarization of about 70% and energy up to hundreds of MeV. Such γ-rays can be produced with currently achievable laser facilities and will find various applications in high-energy physics and laboratory astrophysics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    9
    Citations
    NaN
    KQI
    []