Phylogenetic inference of Indian malaria vectors from multilocus DNA sequences
2010
Inferences on the taxonomic positions, phylogenetic interrelationships and divergence time among closely related species of medical importance is essential to understand evolutionary patterns among species, and based on which, disease control measures could be devised. To this respect, malaria is one of the important mosquito borne diseases of tropical and sub-tropical parts of the globe. Taxonomic status of malaria vectors has been so far documented based on morphological, cytological and few molecular genetic features. However, utilization of multilocus DNA sequences in phylogenetic inferences are still in dearth. India contains one of the richest resources of mosquito species diversity but little molecular taxonomic information is available in Indian malaria vectors. We herewith utilized the whole genome sequence information of An. gambiae to amplify and sequence three orthologous nuclear genetic regions in six Indian malaria vector species (An. culicifacies, An. minimus, An. sundaicus, An. fluviatilis, An. annularis and An. stephensi). Further, we utilized the previously published DNA sequence information on the COII and ITS2 genes in all the six species, making the total number of loci to five. Multilocus molecular phylogenetic study of Indian anophelines and An. gambiae was conducted at each individual genetic region using Neighbour Joining (NJ), Maximum Likelihood (ML), Maximum Parsimony (MP) and Bayesian approaches. Although tree topologies with COII, and ITS2 genes were similar, for no other three genetic regions similar tree topologies were observed. In general, the reconstructed phylogenetic status of Indian malaria vectors follows the pattern based on morphological and cytological classifications that was reconfirmed with COII and ITS2 genetic regions. Further, divergence times based on COII gene sequences were estimated among the seven Anopheles species which corroborate the earlier hypothesis on the radiation of different species of the Anopheles genus during the late Cretaceous period.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
97
References
12
Citations
NaN
KQI