Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction
2019
Carboxylic acid reductases (CARs) are biocatalysts of industrial importance. Their properties, especially their poor stability, render them sub-optimal for use in a bioindustrial pipeline. Here, we employed ancestral sequence reconstruction (ASR) – a burgeoning engineering tool that can identify stabilizing but enzymatically neutral mutations throughout a protein. We used a three-algorithm approach to reconstruct functional ancestors of the Mycobacterial and Nocardial CAR1 orthologues. Ancestral CARs (AncCARs) were confirmed to be CAR enzymes with a preference for aromatic carboxylic acids. Ancestors also showed varied tolerances to solvents, pH and in vivo-like salt concentrations. Compared to well-studied extant CARs, AncCARs had a Tm up to 35 °C higher, with half-lives up to nine times longer than the greatest previously observed. Using ancestral reconstruction we have expanded the existing CAR toolbox with three new thermostable CAR enzymes, providing access to the high temperature biosynthesis of aldehydes to drive new applications in biocatalysis. Thomas et al. uses ancestral sequence reconstruction (ASR) tool to reconstruct functional ancestors of the Mycobacterial and Nocardial CAR1 orthologues, representing one of the largest reconstructed proteins to date. These ancestral CARs display varied tolerances to solvents, pH and in vivo-like salt concentrations along with high thermostability compared to well-studied extant CARs.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
78
References
7
Citations
NaN
KQI