Hydroxylated Chalcones as Aryl Hydrocarbon Receptor Agonists: Structure-Activity Effects.

2020 
Hydroxylated chalcones are phytochemicals which are biosynthetic precursors of flavonoids and their 1,3-diaryl-prop-2-en-1-one structure is used as a scaffold for drug development. In this study, the structure-dependent activation of aryl hydrocarbon receptor (AhR)-responsive CYP1A1, CYP1B1 and UGT1A1 genes was investigated in Caco2 colon cancer cells and in non-transformed young adult mouse colonocytes (YAMC) cells. The effects of a series of di- and trihydroxychalcones as AhR agonists was structure-dependent with maximal induction of CYP1A1, CYP1B1 and UGT1A1 in Caco2 cells observed for compounds containing 2,2'-dihydroxy substituents and this included 2,2'-dihydroxy-, 2,2',4'-trihydroxy- and 2,2',5'-trihydroxychalcones. In contrast, 2',4,5'-, 2'3',4'-, 2',4,4'-trihydroxy, and 2',3-, 2',4-, 2',4'-, and 2',5-dihydroxychalcones exhibited low to non-detectable AhR activity in Caco2 cells. In addition, all of the hydroxychalcones exhibited minimal to non-detectable activity in YAMC cells, whereas 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced CYP1A1, CYP1B1 and UGT1A1 in Caco2 and YAMC cells. The activity of AhR-active chalcones was confirmed by determining their effects in AhR-deficient, Caco2 cells. In addition, 2,2'-dihydroxychalcone induced CYP1A1 protein and formation of an AhR-DNA complex in an in vitro assay. Simulation and modeling studies of hydroxylated chalcones confirmed their interactions with the AhR ligand binding domain and was consistent with their structure-dependent activity as AhR ligands. Thus, this study identifies hydroxylated chalcones as AhR agonists with potential for these phytochemicals to impact AhR mediated colonic pathways.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    0
    Citations
    NaN
    KQI
    []