Pyramidal cell subtype-dependent cortical oscillatory activity regulates motor learning.

2021 
The cortex processes information through intricate circuitry and outputs to multiple brain areas by different sets of pyramidal cells (PCs). PCs form intra- and inter-laminar subnetworks, depending on PC projection subtypes. However, it remains unknown how individual PC subtypes are involved in cortical network activity and, thereby, in distinct brain functions. Here, we examined the effects of optogenetic manipulations of specific PC subtypes on network activity in the motor cortex. In layer V, the beta/gamma frequency band of oscillation was evoked by photostimulation, depending on PC subtypes. Our experimental and simulation results suggest that oscillatory activity is generated in reciprocal connections between pyramidal tract (PT) and fast-spiking cells. A similar frequency band was also observed in local field potentials during a pattern learning task. Manipulation of PT cell activity affected beta/gamma band power and learning. Our results suggest that PT cell-dependent oscillations play important roles in motor learning. Otsuka and Kawaguchi investigate how manipulation of pyramidal cell subtypes in the motor cortex affects cortical network activity. Their findings suggest that pyramidal cell type cell-dependent oscillatory activity play an important role in motor learning.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    1
    Citations
    NaN
    KQI
    []