Evaluation of the n-alkane technique for estimating the individual intake of dairy cows consuming diets containing herbage and a partial mixed ration

2020 
Abstract Estimation of dry matter intake (DMI) using the n-alkane technique was evaluated in lactating dairy cows fed fresh herbage and a partial mixed ration (PMR). Four dietary treatments were investigated in a 2 × 2 factorial experiment using 16 Holstein-Friesian dairy cows. Dietary treatments were combinations of low and high amounts of fresh herbage (8 or 14 kg of DM/cow per day) and PMR supplement (6 or 12 kg of DM/cow per day). The pre-experimental period was 14 days followed by a 10-day experimental period. Cows were housed in individual metabolism stalls to allow for accurate measurement of DMI and total fecal output. Fecal n-alkane recovery rates were calculated to determine the most accurate corrections for incomplete fecal n-alkane recovery. The n-alkane technique accurately estimated DMI when corrected for incomplete fecal recovery using both published recovery rates and recovery rates calculated in this experiment. The most accurate application of recovery rates was with those calculated for each combination of dietary treatments, compared with using an average recovery rate. This research has important implications for the future use of the n-alkane technique, especially in PMR feeding systems. The discrepancy between estimated (when treatment recovery rates were applied) and measured herbage DMI increased with the amount of herbage offered but was not affected by amount of PMR. It was also found that the recovery rates of all natural n-alkanes increased as the amount of herbage increased. This research demonstrates that the n-alkane technique can be used to accurately estimate individual cow intake when fresh herbage and PMR are offered separately, evidenced by strong Lin’s concordance estimates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    3
    Citations
    NaN
    KQI
    []