Near-fiber nanomechanical mapping and impact failure mechanism of 3D braided composites subjected to thermo-oxidative environment

2021 
Abstract The macroscopic mechanical behaviors generally correlate with nanomechanical properties, especially elastic modulus. This paper presents the thermo-oxidative ageing effects on nanoscale elastic modulus and impact failure mechanism of 3D braided composites at micro and macro levels using PeakForce Quantitative Nano-Mechanics (PF-QNM) and digital image correlation (DIC) technologies. The values of nanoscale elastic modulus of near-fiber resin pocket were about three times than that of global modulus in neat resin under low-velocity impact compression (LVIC) loading. However, the modulus retention rates were consistent which was ∼88% after ageing for 16 days at 180 °C. The decline of them has provided a direct evidence for resin degradation after ageing. In addition, the in-plane impact failure mechanism of braided composites mainly contained five modes, i.e., matrix cracking, interface cracking, matrix fracture and peeling off, fiber buckling and slipping, and fiber breakage. Thermo-oxidative ageing only changed the crack propagation path but not the damage modes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []