Plastic collapse in non-associated hardening materials with application to Cam-clay
2007
Abstract This paper presents a variational formulation for the analysis of plastic collapse conditions for a class of hardening materials that accounts for some non-associated flow laws such as the modified Cam-clay model of soils. In this framework, classical statical and kinematical principles of limit analysis do not hold. The variational principle is formulated for the general class of materials whose flow equations are derived from a kind of generalized potentials named bipotentials by de Saxce. The plastic collapse phenomenon for hardening materials is considered first and formulated as a system of equations. In particular, the case of the usual modified Cam-clay model is analyzed. The paper follows with the proposal of a minimization principle whose solution is then related to the solution of the plastic collapse problem. We demonstrate the use of this minimum principle in a simple example of triaxial compression of a modified Cam-clay material. Finally, we discuss the particular form of the proposed variational formulation for the case of associated plasticity.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
33
References
23
Citations
NaN
KQI