Metabolic engineering of Corynebacterium glutamicum for production of sunscreen shinorine

2018 
AbstractUltraviolet-absorbing chemicals are useful in cosmetics and skin care to prevent UV-induced skin damage. We demonstrate here that heterologous production of shinorine, which shows broad absorption maxima in the UV-A and UV-B region. A shinorine producing Corynebacterium glutamicum strain was constructed by expressing four genes from Actinosynnema mirum DSM 43827, which are responsible for the biosynthesis of shinorine from sedoheptulose-7-phosphate in the pentose phosphate pathway. Deletion of transaldolase encoding gene improved shinorine production by 5.2-fold. Among the other genes in pentose phosphate pathway, overexpression of 6-phosphogluconate dehydrogenase encoding gene further increased shinorine production by 60% (19.1 mg/L). The genetic engineering of the pentose phosphate pathway in C. glutamicum improved shinorine production by 8.3-fold in total, and could be applied to produce the other chemicals derived from sedoheptulose-7-phosphate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    9
    Citations
    NaN
    KQI
    []