Correlations between metabolites in the synovial fluid and serum: a mouse injury study

2021 
Osteoarthritis, the most common degenerative joint disease, occurs more frequently in joints that have sustained injury. Currently, osteoarthritis is diagnosed with imaging that finds radiographic changes after the disease has already progressed to multiple tissues. The primary objective of this study was to compare potential metabolomic biomarkers of joint injury between the synovial fluid and serum in a mouse model of post-traumatic osteoarthritis. The secondary objective was to gain insight into the pathophysiology of osteoarthritis by examining metabolomic profiles after joint injury. 12-week-old adult female C57BL/6 mice (n=12) were randomly assigned to control, day 1 post injury, or day 8 post injury groups. Randomly selected stifle (i.e., knee) joints were placed into a non-invasive injury apparatus and subjected to a single dynamic axial compression causing anterior translation of the tibia relative to the femur to tear the anterior cruciate ligament. At days 1 and 8 post injury, serum was extracted then mice were immediately euthanized prior to synovial fluid collection. Metabolites were extracted and analyzed by liquid chromatography coupled to mass spectrometry. We detected ~2500 metabolites across serum and synovial fluid. Of these metabolites 179 were positively correlated and 51 were negatively correlated between synovial fluid and serum, indicating potential for the development of metabolomic biomarkers. Synovial fluid appeared to capture differences in metabolomic profiles between injured mice at both day 1 and 8 after injury whereas serum did not. However, synovial fluid and serum were distinct at both days 1 and 8 after injury. In the synovial fluid, pathways of interest across different time points mapped to amino acid synthesis and degradation, bupropion degradation, and the tRNA charging pathway. In the serum, notable pathways across time points were amino acid synthesis and degradation, the phospholipase pathway, and nicotine degradation. These results provide a rich picture of the injury response at early time points following traumatic joint injury. Furthermore, the correlations between synovial fluid and serum metabolites suggest that there is potential to gain insight into intra-articular pathophysiology through analysis of serum metabolites.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []