Discovery and Structure–Activity-Relationship Study of N-Alkyl-5-hydroxypyrimidinone Carboxamides as Novel Antitubercular Agents Targeting Decaprenylphosphoryl-β-d-ribose 2′-Oxidase

2018 
Magnesium plays an important role in infection with Mycobacterium tuberculosis (Mtb) as a signal of the extracellular environment, as a cofactor for many enzymes, and as a structural element in important macromolecules. Raltegravir, an antiretroviral drug that inhibits HIV-1 integrase is known to derive its potency from selective sequestration of active-site magnesium ions in addition to binding to a hydrophobic pocket. In order to determine if essential Mtb-related phosphoryl transfers could be disrupted in a similar manner, a directed screen of known molecules with integrase inhibitor-like pharmacophores (N-alkyl-5-hydroxypyrimidinone carboxamides) was performed. Initial hits afforded compounds with low-micromolar potency against Mtb, acceptable cytotoxicity and PK characteristics, and robust SAR. Elucidation of the target of these compounds revealed that they lacked magnesium dependence and instead disappointingly inhibited a known promiscuous target in Mtb, decaprenylphosphoryl-β-d-ribose 2′-oxidase (...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    16
    Citations
    NaN
    KQI
    []