High frequency ultrasound imaging and simulations of sea urchin oocytes

2017 
High frequency ultrasound backscatter signals from sea urchin oocytes were measured using a 40 MHz transducer and compared to numerical simulations. The Faran scattering model was used to calculate the ultrasound scattered from single oocytes in suspension. The urchin oocytes are non-nucleated with uniform size and biomechanical properties; the backscatter from each cell is similar and easy to simulate, unlike typical nucleated mammalian cells. The time domain signal measured from single oocytes in suspension showed two distinct peaks, and the power spectrum was periodic with minima spaced approximately 10 MHz apart. Good agreement to the Faran scattering model was observed. Measurements from tightly packed oocyte cell pellets showed similar periodic features in the power spectra, which was a result of the uniform size and consistent biomechanical properties of the cells. Numerical simulations that calculated the ultrasound scattered from individual oocytes within a three dimensional volume showed good ag...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    90
    References
    1
    Citations
    NaN
    KQI
    []