Enhanced Oral Delivery of Curcumin via Vitamin E TPGS Modified Nanodiamonds: a Comparative Study on the Efficacy of Non-covalent and Covalent Conjugated Strategies.
2020
Despite that either non-covalent or covalent attachment of hydrophilic polymers or surfactants onto nanodiamonds (NDs) could overcome the shortcomings of being a drug delivery system, it is hard to draw a definite conclusion which strategy is more effective. Hence, with the purpose of comparing the influence of different coating approach of NDs on the oral delivery efficiency of water-insoluble model drug curcumin (CUR), NDs were firstly modified with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) via non-covalent or covalent conjugation method, and then loaded with CUR (CUR@NDs-COOH/TPGS or CUR@NDs-TPGS). In comparison with the core-shell-structured CUR@NDs-COOH/TPGS, CUR@NDs-TPGS were irregular in shape with dense TPGS film, and exhibited smaller size, more negatively potential, and higher drug loading efficiency. The covalent connection group also showed higher anti-cancer activity, cellular uptake, and permeability through the Caco-2 cell monolayers, as well as favorable distribution, penetration, and retention in rat intestines. The oral bioavailability study in rats demonstrated that CUR@NDs-TPGS showed significantly greater Cmax and AUC0−t in contrast with CUR suspension and the TPGS-coated ones, respectively. The findings illustrated that covalent grafting TPGS onto the surface of NDs possesses better efficacy and biocompatibility on oral delivery of poorly soluble drug CUR than pristine and non-covalent coated nanoparticles.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
41
References
7
Citations
NaN
KQI