Antimicrobial activity of endogenous peptides of the moss Physcomitrella patens

2017 
Plant and animal cells contain pools of endogenous peptides, which are the degradation products of functionally active proteins. It is known that these peptides can possess biological activity; however, the functions of most of them are unknown. The goal of the present study was to estimate the antimicrobial potential of endogenous peptides resulting from the degradation of functional proteins in cells of the moss Physcomitrella patens. Earlier, 117 peptides possessing an antimicrobial potential predicted in silico have been identified in the peptidomes of three types of P. patens cells by mass spectrometry. In the present work, the antimicrobial activity of six of these peptides toward the gram-positive bacteria Bacillus subtilis SHgw and Clavibacter michiganensis pv. michiganensis and gram-negative bacteria Escherichia coli K12 and Xanthomonas arboricola 3004 has been revealed. The results have shown that three of six peptides inhibit the growth of the phytopathogenic bacteria X. arboricola and C. m. pv. michiganensis; four peptides inhibit the growth of the gram-negative bacterium E. coli K12, and one peptide inhibits the growth of the gram-positive bacterium B. subtilis. It has been found that the peptides inhibiting the bacterial growth are predominantly the fragments of ribosomal proteins. The work confirms the potential of the biological activity of peptides that are the degradation products of functional proteins.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    6
    Citations
    NaN
    KQI
    []