Accurate Method To Determine the Mobility of Transition-Metal Dichalcogenides with Incomplete Gate Screening

2019 
van der Waals layered transition-metal dichalcogenides usually exhibit high contact resistance because of the induced Schottky barriers, which occur at nonideal metal–semiconductor contacts. These barriers usually contribute to an underestimation in the determination of mobility, when extracted by standard, two-terminal methods. Furthermore, in devices based on atomically thin materials, channels with thicknesses of up to a few layers cannot completely screen the applied gate bias, resulting in an incomplete potential drop over the channel; the resulting decreased field effect causes further underestimation of the mobility. We demonstrate a method based on Kelvin probe force microscopy, which allows us to extract the accurate semiconductor mobility and eliminates the effects of contact quality and/or screening ability. Our results reveal up to a sevenfold increase in mobility in a monolayer device.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    2
    Citations
    NaN
    KQI
    []