Waveguiding in two-dimensional piezoelectric phononic crystal plates

2007 
We investigate the possibility of designing phononic crystal-based devices for telecommunication applications using materials commonly employed in microfabrication. We focus our attention on a phononic crystal made of a square array of cylindrical holes drilled in an active piezoelectric PZT5A matrix. Two different structures are considered, namely, a freestanding phononic crystal plate and a plate deposited on a silicon substrate. The geometrical characteristics of the phononic crystal plates (lattice parameter and thickness) were chosen to ensure the existence of an absolute band gap around 1.5GHz; a common frequency in radio frequency telecommunications. Computations of the dispersion curves of these active structures were conducted with the help of the finite element method. We demonstrate the existence of absolute band gaps in the band structure of the phononic crystal plates and, then, the possibility of guided modes inside a linear defect created by removing one row of air holes in the phononic cry...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    133
    Citations
    NaN
    KQI
    []