Three-dimensional reduced-graphene/MnO2 prepared by plasma treatment as high-performance supercapacitor electrodes

2018 
In this work, three-Dimensional nitrogen-doped graphene/MnO2 (NG/MnO2) was prepared by plasma treatment, which provides a high specific surface area due to porous structure and exhibits enhanced supercapacitor performance. The advantage of NG/MnO2 electrode was obvious compared with reduced graphene oxide/MnO2 (RGO/MnO2) which was prepared by traditional hydrothermal method, such as improved electrochemical property and better cycling stability. The specific capacitance of NG/MnO2 at the scan rate of 5 mV s−1 (393 F g−1) is higher than that of RGO/MnO2 (260 F g−1). In addition, NG/MnO2 showed higher durability with 90.2% capacitance retention than that of RGO/MnO2 (82%) after 5000 cycles. Such cheap and high-performance supercapacitor electrodes are available by our feasible plasma treatment, which give promise in large-scale commercial energy storage devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    8
    Citations
    NaN
    KQI
    []