Fibroblast Growth Factor 2 Induces E-Cadherin Down-Regulation via PI3K/Akt/mTOR and MAPK/ERK Signaling in Ovarian Cancer Cells

2013 
Fibroblast growth factor 2 (FGF2) is produced by ovarian cancer cells and it has been suggested to play an important role in tumor progression. In this study, we report that FGF2 treatment down-regulated E-cadherin by up-regulating its transcriptional repressors, Slug and ZEB1, in human ovarian cancer cells. The pharmacological inhibition of phosphatidylinositol-3-kinase (PI3K), mammalian target of rapamycin (mTOR), and MEK suggests that both PI3K/Akt/mTOR and MAPK/ERK signaling are required for FGF2-induced E-cadherin down-regulation. Moreover, FGF2 up-regulated Slug and ZEB1 expression via the PI3K/Akt/mTOR and MAPK/ERK signaling pathways, respectively. Finally, FGF2-induced cell invasion was abolished by the inhibition of the PI3K/Akt/mTOR and MAPK/ERK pathways, and the forced expression of E-cadherin diminished the intrinsic invasiveness of ovarian cancer cells as well as the FGF2-induced cell invasion. This study demonstrates a novel mechanism in which FGF2 down-regulates E-cadherin expression through the activation of PI3K/Akt/mTOR and MAPK/ERK signaling, and the up-regulation of Slug and ZEB1 in human ovarian cancer cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    70
    Citations
    NaN
    KQI
    []