Bulk-based DC offset calibration for low-power memristor array read-out system

2017 
Memristors in neuromorphic circuits typically need to drive currents of many mA because their Low Resistance State (LRS) is in the order of a few kΩ and many devices need to be activated simultaneously which results in high power consumptions. Reducing read-out pulses amplitudes below the typical 0.1V is not trivial, as offset voltages of read-out circuits start to affect the results. This paper presents a three-stage cascaded calibration to compensate for the resting offset voltage of crossbar lines generated in the amplifiers driving memristive devices in memristor array read-out systems. The proposed calibration technique is based on adjusting the bulk voltage of the input differential pairs by means of a switchable cascade of resistor ladders. As a result, the calibrated offset voltage can be further reduced with the number of stages in the cascade, leading to a calibration voltage step below 0.1mV — only limited in practice by mismatch and electrical noise. The circuit has been designed in 130nm CMOS technology, and its operation has been verified with oxide-based resistive memory (OxRAM) devices operated in binary mode to implement synapses in neuro-morphic circuits. Layout-extracted simulations considering PVT variations are considered to validate the presented calibration technique.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    0
    Citations
    NaN
    KQI
    []