EGFR Inhibition Induces Proinflammatory Cytokines via NOX4 in HNSCC

2013 
Chronic inflammation plays a fundamental role in tumor promotion, migration, and invasion. With the use of microarray profiling, a profound increase was observed for those transcripts involved in proinflammatory signaling in epidermal growth factor receptor (EGFR) inhibitor–treated head and neck squamous cell carcinoma (HNSCC) cells as compared with their respective controls. As such, it was hypothesized that EGFR inhibitor efficacy is offset by the proinflammatory response that these therapeutics conjure in HNSCC. Systematic evaluation of the clinical EGFR inhibitorserlotinib, cetuximab, lapatinib, and panitumumab—revealed increased secretion of proinflammatory cytokines such as interleukins (IL-2, IL-4, IL-6, IL-8), granulocyte-macrophage colony-stimulating factor, TNF-α, and IFN-γ. Mechanistic focus on IL-6 revealed that erlotinib induced a time-dependent increase in IL-6 mRNA and protein expression. Importantly, exogenous IL-6 protected HNSCC cells from erlotinib-induced cytotoxicity, whereas tocilizumab, an IL-6 receptor antagonist, sensitized cells to erlotinib in vitro and in vivo . Inhibitors of NF-κB, p38, and JNK suppressed erlotinib-induced IL-6 expression, suggesting critical roles for NF-κB and MAPK in IL-6 regulation. Furthermore, knockdown of NADPH oxidase 4 (NOX4) suppressed erlotinib-induced proinflammatory cytokine expression. Taken together, these results demonstrate that clinical EGFR inhibitors induce the expression of proinflammatory cytokines via NOX4. Implications: The antitumor activity of EGFR inhibitors is reduced by activation of NOX4-mediated proinflammatory pathways in HNSCC. Mol Cancer Res; 11(12); 1574–84. ©2013 AACR .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    36
    Citations
    NaN
    KQI
    []