Protein histidine [de]phosphorylation in insulin secretion: abnormalities in models of impaired insulin secretion

2011 
In the majority of cell types, including the islet β-cell, transduction of extracellular signals involves ligand binding to a receptor, often followed by the activation G proteins and their effector modules. The islet β-cell is unusual in that glucose lacks an extracellular receptor. Instead, events consequent to glucose metabolism promote insulin secretion via the generation of diffusible second messengers and mobilization of calcium. A selective increase in intracellular calcium has been shown to regulate the phosphorylation status key islet proteins thereby facilitating insulin secretion. In addition to classical protein kinases [e.g., protein kinases A and C], recent studies from our laboratory have focused on the expression and function of various forms of NDPK/nm23-like histidine kinases in clonal β-cells, normal rodent, and human islets. Further, we recently reported localization of a cytosolic protein histidine phosphatase [PHP] in INS 832/13 cells, normal rat islets, and human islets. siRNA-mediated knock down of nm23-H1 and PHP in insulin-secreting INS 832/13 cells significantly attenuated glucose-induced insulin secretion. We also observed significant alterations in the expression and function of nm23-H1/PHP in β-cells chronically exposed to elevated levels of glucose and saturated fatty acids, such as palmitate (i.e., glucolipotoxicity). Similar changes were also noted in islets from the Goto-Kakizaki and Zucker Diabetic Fatty rats, two known models for type 2 diabetes. It is concluded that protein histidine phosphorylation–dephosphorylation cycles play novel regulatory roles in G protein-mediated physiological insulin secretion and that abnormalities in this signaling axis lead to impaired insulin secretion in glucolipotoxicity and type 2 diabetes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    3
    Citations
    NaN
    KQI
    []