Unravelling the role of surface modification in the dermocompatibility of silver nanoparticles in vitro and in vivo

2021 
Abstract A clearer picture of interactions between differently coated silver nanoparticles (AgNPs) and biological interfaces that are confronted with by the dermal exposure route is of utmost importance for the risk assessment of various AgNP-based formulations utilized in the medical and dermocosmetic fields. This work sought to understand how surface modification of AgNPs, especially those produced by green synthesis strategy, affect the surface chemistry and dermocompatibility. Phytosynthetized AgNPs diverse in bio-reducing/capping agents i.e. chlorogenic acid, glycyrrhizic acid and gallic acid, were prepared by a bioinspired green approach and characterized in terms of size, shape, crystal phase, surface charge, structure and antioxidant activity. Chemically synthetized AgNPs stabilized by trisodium citrate or polyvinylpyrrolidone were also analyzed for comparison. The biological test results illustrate that varying coating material for AgNP stabilization results in differential toxicity against dermal microbes and HaCaT keratinocytes in vitro and affects dermal absorption through intact/compromised skin in vivo. Among all test samples, the citrate-stabilized AgNPs displayed the maximum cytotoxicity and dermal absorption. It is also of interest to note that the phytosynthetized AgNPs with chlorogenic acid exhibited superior antioxidant, attenuated cytotoxicity and minimal skin deposition, while those modified with glycyrrhizic acid demonstrated a preferentially antibacterial activity against the pathogenic (Escherichia coli and Staphylococcus aureus) over the beneficial bacterial strains (Staphylococcus epidermidis) inhabiting human skin. Furthermore, a percutaneous absorption of AgNPs into live epidermis was observed on all 7–13 nm sized AgNPs, irrespective of surface coating, with more pronounced skin deposition of silver species occurring for the chemically-synthetized AgNPs within compromised skin. Given all these results, it is concluded that surface modification with particular phytochemicals may render AgNPs with enhanced dermocompatibility or antimicrobial activity. This study provides a basis for risk assessments of phytosynthetized AgNPs in consumer products and suggests the possibility of tailoring AgNPs applicability via green chemistry approach.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []