The effects of hydrodynamics on the three-dimensional downstream migratory movement of Atlantic salmon

2019 
Abstract Anthropogenic structures in rivers are major threats for fish migration and effective mitigation is imperative given the worldwide expansion of such structures. Fish behaviour is strongly influenced by hydrodynamics, but little is known on the relation between hydraulics and fish fine scale-movement. We combined 3D Computational fluid dynamics modelling (CFD) with 2D and 3D fish positioning to investigate the relation between hydrodynamics and the downstream movement of Atlantic salmon smolts (Salmo salar). We show that fish use fine-scale flow velocity and turbulence as navigation cues of fine-scale movement behaviour. Tri-dimensional swimming speed and swimming direction can be explained by adjustments of fish to flow motion, which were linked to fish swimming mode. Fish diverge from the flow by swimming at speeds within or higher than their prolonged speeds (0.38–0.73 m s−1). Flow direction played a pivotal role on fish swimming performance, with high upstream and downwards velocities impacting swimming the most. Turbulence was also influential, by benefiting swimming performance at low TKE (
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    13
    Citations
    NaN
    KQI
    []