Subcellular calcium transients visualized by confocal microscopy in a voltage-clamped vertebrate neuron

1990 
Confocal laser-scanned microscopy and long-wavelength calcium (Ca2+) indicators were combined to monitor both sustained and rapidly dissipating Ca2+ gradients in voltage-clamped sympathetic neurons isolated from the bullfrog. After a brief activation of voltage-dependent Ca2+ channels, Ca2+ spreads inwardly, and reaches the center of these spherical cells in about 300 milliseconds. Although the Ca2+ redistribution in the bulk of the cytosol could be accounted for with a radial diffusion model, local nonlinearities, suggesting either nonuniform Ca2+ entry or spatial buffering, could be seen. After electrical stimulation, Ca2+ signals in the nucleus were consistently larger and decayed more slowly than those in the cytosol. A similar behavior was observed when release of intracellular Ca2+ was induced by caffeine, suggesting that in both cases large responses originate from Ca2+ release sites near or within the nucleus. These results are consistent with an amplification mechanism involving Ca2(+)-induced Ca2+ release, which could be relevant to activity-dependent, Ca2(+)-regulated nuclear events.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    307
    Citations
    NaN
    KQI
    []