Reinforcing hydroxyapatite/thermosetting epoxy composite with 3-D carbon fiber fabric through RTM processing

2004 
Abstract Bioactive ceramic/polymer composites have been developed in the orthopaedic field in recent years. In this work, three-dimensional (3-D) carbon fiber fabric is used to reinforce hydroxyapatite (HA)/thermosetting epoxy composite and epoxy resin through resin transfer molding (RTM) processing. It is found that the 3-D carbon fiber fabric can be impregnated with epoxy and HA-containing epoxy resin, and HA is distributed gradually along the depth direction in fiber-reinforced HA/epoxy composite, although HA is dispersed evenly in epoxy resin by surface modification of silane coupling agent. The impact toughness and flexural strength of fiber-reinforced epoxy and fiber-reinforced HA/epoxy composites are much higher than those of epoxy and HA/epoxy composite. The impact toughness of both fiber-reinforced composites decreases while the flexural strength and the flexural modulus increase with fiber volume ratio. The impact toughness of the fiber-reinforced HA/epoxy composite is higher, while the flexural strength and modulus are lower than those of the fiber-reinforced epoxy composite at the same fiber volume ratio. The flexural strength of the both composites is higher than, and their flexural modulus is close to, those of the human cortical bone. The in vitro cytotoxicity test with L929 fibroblasts shows that the addition of HA diminished the toxicity of epoxy resin.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    35
    Citations
    NaN
    KQI
    []