2.7 Å cryo-EM structure of vitrified M. musculus H-chain apoferritin from 200 keV "screening microscope"

2019 
Here we present the structure of mouse H-chain apoferritin at 2.7 A (FSC=0.143) solved by single particle cryogenic electron microscopy (cryo-EM) using a 200 kV device. Data were collected using a compact, two-lens illumination system with a constant power objective lens, without the use of energy filters or aberration correctors. Coulomb potential maps reveal clear densities for main chain carbonyl oxygens, residue side chains (including alternative conformations) and bound solvent molecules. We argue that the advantages offered by (a) the high electronic and mechanical stability of the microscope, (b) the high emission stability and low beam energy spread of the high brightness Field Emission Gun (x-FEG), (c) direct electron detection technology and (d) particle-based Contrast Transfer Function (CTF) refinement have contributed to achieving resolution close to the Rayleigh limit. Overall, we show that basic electron optical settings for automated cryo-electron microscopy imaging, widely thought of as a "screening cryo-microscope", can be used to determine structures approaching atomic resolution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    3
    Citations
    NaN
    KQI
    []