Model predictive control for ethanol steam reformers with membrane separation

2017 
Abstract This paper focuses on the dynamic modelling and the predictive control of an ethanol steam reformer (ESR) with Pd Ag membrane separation stage for the generation of pure hydrogen. Hydrogen purity necessary to feed a proton exchange membrane fuel cell (PEMFC) is required. A non-linear dynamic model of the ESR is developed together with a procedure for adjusting the model parameters in order to fit a bank of experimental data of a real ESR system. Static and dynamic analysis of the non-linear ESR model is presented. From this non-linear model, a linear, reduced order and discretised model is derived and a model predictive controller (LMPC) is designed for the ESR system. Control objectives are pure hydrogen flowrate tracking and ethanol inlet minimization. Comparisons between the non-linear and linear models are carried out to determine the control constraints. Finally, simulation results for the implemented LMPC controller are presented and discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    18
    Citations
    NaN
    KQI
    []