Computing Electromagnetic Bandgap Structure of Metamaterial-Based 2D Photonic Crystal for TM Mode

2020 
The electromagnetic bandgap of metamaterial-based two-dimensional photonic crystal structure with rectangular geometry is analytically computed by plane-wave expansion method. A wide range of DNG materials is considered for simulation purpose to calculate the width of bandgap (forbidden region) and their position coordinates in the band diagram. It has been established that complete bandgap formation is possible for TM mode, and the results are also compared with that obtained for positive refractive index materials with air holes of similar dimension. Peak point coordinates of ‘equivalent’ valence bands are notified for different DNG materials which will reveal the position shift of lowermost forbidden region. Existences of multiple such regions are confirmed for DNG materials which will speak for its candidature in utilizing as a multi-channel filter at a high-frequency range.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []