Dub-seq: dual-barcoded shotgun expression library sequencing for high-throughput characterization of functional traits

2018 
A major challenge in genomics is the knowledge gap between sequence and its encoded function. Gain-of-function methods based on gene overexpression are attractive avenues for phenotype-based functional screens, but are not easily applied in high-throughput across many experimental conditions. Here, we present Dual Barcoded Shotgun Expression Library Sequencing (Dub-seq), a method that greatly increases the throughput of genome-wide overexpression assays. In Dub-seq, a shotgun expression library is cloned between dual random DNA barcodes and the precise breakpoints of DNA fragments are associated to the barcode sequences prior to performing assays. To assess the fitness of individual strains carrying these plasmids, we use DNA barcode sequencing (BarSeq), which is amenable to large-scale sample multiplexing. As a demonstration of this approach, we constructed a Dub-seq library with total Escherichia coli genomic DNA, performed 155 genome-wide fitness assays in 52 experimental conditions, and identified 813 genes with high-confidence overexpression phenotypes across 4,151 genes assayed. We show that Dub-seq data is reproducible, accurately recapitulates known biology, and identifies hundreds of novel gain-of-function phenotypes for E. coli genes, a subset of which we verified with assays of individual strains. Dub-seq provides complementary information to loss-of-function approaches such as transposon site sequencing or CRISPRi and will facilitate rapid and systematic functional characterization of microbial genomes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    1
    Citations
    NaN
    KQI
    []