Chromosomal protein interactions in chromatin and with DNA

1976 
Abstract Metabolically labeled non-histone chromosomal proteins of high specific activity were fractionated on the basis of their sequential extractability from Krebs II chromatin with urea/salt solutions according to Bekhor et al. (1974 a ). The binding of each of these NHCP † classes to protein-free DNA and histone-DNA complexes (nucleohistone) was measured and compared to the binding to DNA substituted with 5-bromo-2′-deoxyuridine. After reconstitution of the interacting components, the binding of NHCP and histones was measured according to Scatchard formalism by titration of fixed amounts of DNA with increasing inputs of protein ligands under stringent conditions of 0.25 ionic strength, pH 8.0. Histone binding to either native DNA or BrUrd-substituted DNA was found to be essentially the same. In the presence of histones, the binding for all NHCP classes, except for medium 3 NHCP, was enhanced by an order of magnitude over the binding values for NHCP to DNA in the absence of histones. The binding of NHCP to DNA was thus strongly influenced by histones bound to DNA. A general and significant decrease in histone content in the complexes relative to increased NHCP binding was also apparent, with medium 3 NHCP having the greatest activity to weaken histone interaction with DNA and medium 0 the least. Enhancement in NHCP binding to BrUd-substituted DNA in the presence of histones was decreased to about 50% of the binding to control DNA. The distribution and quantity of DNA binding and non-DNA binding NHCP was also estimated by photochemical attachment to 33% BrUrd-substituted DNA in tryptophan-labeled chromatin and by direct binding assays. We have obtained 30% crosslinking for either histones or NHCP to DNA in stringently formed complexes. In histone-NHCP-DNA complexes, histone crosslinking remained unchanged, while that of NHCP increased to 70%. This is further evidence for a modification in the binding of NHCP to DNA in the presence of histones. The percentage of NHCP crosslinked to DNA in native chromatin ranged from 24% for medium 0 NHCP to 50% for medium 1 and 3 NHCP with an average of 35% for total NHCP. These results plus the direct binding assays indicate that NHCP, in addition to high affinity DNA binding, also interacts non-specifically to DNA and to proteins in chromatin. A mechanism is also being proposed to account for the observed BrUrd effects in chromatin.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    26
    Citations
    NaN
    KQI
    []