Computational analysis of high precision nano-sensors for diagnosis of viruses: Effects of partial antibody layer

2022 
Abstract By using these high precision nano-bio-sensors, the slightest mechanical changes are also recognizable, as its detection limit is one hundred times more than conventional methods such as electrochemical sensing. In this research, a silicon nano-bio-sensor is modeled based on a novel modified nonlocal Euler–Bernoulli beam theory. On this basis, shift of resonant frequencies are determined due to adsorption of fine biological particles on the antibody layer. In this regard, the effects of stiffness and mass of partial antibody layer in addition to surface tensions, nonlocal parameter and rotary inertia are investigated, simultaneously. Consequently, the precise resonant frequency of a cantilever biological nano-sensor is determined for diagnosis of viruses. Totally, the results show that resonant frequency of nano-sensor is reduced by taking these effects into account, which should not be ignored at nano-scale. Finally, for the validation of numerical results, the presented results are compared with existing literatures and show complete agreement. This research can create proper insights into the analysis and design of precise resonator bio-nano-sensors based on computational methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []