The Core-Cusp Problem Revisited: ULDM vs. CDM

2020 
The core-cusp problem is a widely cited motivation for the exploration of dark matter models beyond standard cold dark matter. One such alternative is ultralight dark matter (ULDM), extremely light scalar particles exhibiting wavelike properties on kiloparsec scales. Astrophysically realistic ULDM halos are expected to consist of inner solitonic cores embedded in NFW-like outer halos. The presence of the solitonic core suggests that ULDM may resolve the core-cusp discrepancy associated with pure NFW halos without recourse to baryonic physics. However, it has been demonstrated that the density of ULDM halos can exceed those of comparable NFW configurations at some radii and halo masses, apparently exacerbating the problem rather than solving it. This situation arises because, although solitonic cores are flat at their centres, they obey an inverse mass–radius scaling relationship. Meanwhile, the mass of the inner soliton increases with the total halo mass, and therefore the inner core becomes more peaked at large halo masses. We describe a parameterisation of the radial density profiles of ULDM halos that allows for environmental variability of the core–halo mass relation in order to investigate this issue in more detail. For halos up to $10^{12} {\rm M}_\odot$ , we find feasible ULDM profiles for which the central density is lower than their NFW counterparts at astrophysically accessible radii. However, comparisons to observed profiles do not strongly favour either option; both give reasonable fits to subsets of the data for some parameter choices. Consequently, we find that robust tests of the core-cusp problem in ULDM will require more comprehensive observational data and simulations that include baryonic feedback.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    5
    Citations
    NaN
    KQI
    []