EZH2-mediated lncRNA ABHD11-AS1 promoter regulates the progression of ovarian cancer by targeting miR-133a-3p.

2021 
Long-chain noncoding RNAs (lncRNAs) are involved in a wide range of biological and pathological processes in ovarian cancer. The purpose of this study was to investigate the effects of EZH2-mediated ABHD11-AS1 promoter on the pathogenesis of ovarian cancer. The expression levels of EZH2, ABHD11-AS1 and miR-133a-3p were examined in ovarian cancer tissues using reverse transcription-quantitative PCR. Cell proliferation was evaluated using cell counting kit 8 assay, and cell invasion/migration was determined using a Transwell assay. Cell apoptosis was evaluated using flow cytometry. Dual luciferase assay was performed to confirm the interaction between ABHD11-AS1 and miR-133a-3p. The binding site of H3K27me3 on ABHD11-AS1 promoter was confirmed by ChIP. The expression of ABHD11-AS1 was significantly upregulated in ovarian cancer samples, and its levels were closely associated with lymph node metastasis, tumor stage and 3-year survival rate. Furthermore, interference of ABHD11-AS1 suppressed the proliferation, migration and invasion of ovarian cancer cells, while cell apoptosis was promoted. Additionally, miR-133a-3p could be a novel target of ABHD11-AS1, and EZH2-mediated H3K27me3 protein might bind to ABHD11-AS1 promoter directly. Moreover, rescue experiments indicated that the effects caused by ABHD11-AS1 knockdown on the malignant characteristics of ovarian cancer cells were notably enhanced by miR-133a-3p mimics, whereas the influences on cell growth and metastasis induced by overexpressed ABHD11-AS1 were abrogated by the restoration of miR-133a-3p expression. In summary, EZH2-mediated enrichment of H3K27me3 on ABHD11-AS1 promoter could regulate the progression of ovarian cancer via miR-133a-3p. Therefore, EZH2/ABHD11-AS1/miR-133a-3p axis might be a putative candidate for targeted treatment of ovarian cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    1
    Citations
    NaN
    KQI
    []