Identification of native rat cerebellar granule cell currents due to background K channel KCNK5 (TASK-2)

2004 
Abstract The T WIK-related, A cid S ensing K (TASK-2; KCNK5) potassium channel is a member of the tandem pore (2P) family of potassium channels and mediates an alkaline pH-activated, acid pH-inhibited, outward-rectified potassium conductance. In previous work, we demonstrated TASK-2 protein expression in newborn rat cerebellar granule neurons (CGNs). In this study, we demonstrate TASK-2 functional expression in CGNs as a component of the pH-sensitive, volatile anesthetic-potentiated, standing-outward potassium conductance ( I K,SO ). Using excised, inside-out patch-clamp technique, we studied CGNs grown in primary culture. We identified four distinct, noninactivating single channel potassium conductances, Types 1–4. Types 1–3 have previously been attributed to TASK-1 (KCNK3), TASK-3 (KCNK9) and TASK-1/TASK-3 heteromers, and TREK-2 (KCNK10) 2P potassium channel function, respectively; however, the Type 4 conductance is currently unassigned. Previous studies demonstrated that Type 4 single channel activity is potentiated by extracellular, alkaline pH and cytoplasmic arachidonic acid (10–20 μM) and inhibited by cytoplasmic tetraethylammonium (TEA; 1 mM). We determined that heterologously expressed TASK-2 channels have single channel gating, conductance properties and pH sensitivity identical to the Type 4 conductance. Additionally, we found that TASK-2 single channel activity, like the Type 4 conductance is potentiated by cytoplasmic arachidonic acid (20 μM) and inhibited by cytoplasmic TEA (1 mM). We conclude that TASK-2 mediates the Type 4 single channel conductance in CGNs as a component of I K,SO .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    18
    Citations
    NaN
    KQI
    []