2.5-D Gravity/Magnetic Model Studies in Sahl El Qaa Area, Southwestern Sinai, Egypt

2013 
The 2.5-D gravity-magnetic models of the upper crustal structures of Sahl El Qaa Area, Southwestern Sinai were constructed along seven profiles, focusing on the uppermost crustal layers to a depth of 4–5 km. In addition separation filtering process; spectral analysis and trend analysis were used to investigate the Bouguer and total intensity aeromagnetic field maps qualitatively and quantitatively. The study showed that the regional structures consist of tilted blocks in the form of a major NW-synclinal feature with an axis dipping northward. This feature is dissected by the NE trending cross faults forming horsts, grabens and step-fault structures. The tilted blocks are controlled by a major normal fault system and are greatly modified in the dip regime from north to south. They show a regional NW dip regime in northern and southern parts, where the depth to the basement reaches about 2–3 km in the down dip. In the central portion, the basin is dipping steeply to the east, with maximum depths attaining about 4–5 km.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    8
    Citations
    NaN
    KQI
    []