Modelling High-temperature EBPR by Incorporating Glycogen and GAOs: Challenges from a Preliminary Study.
2017
Recently reported kinetic and stoichiometric parameters of the Activated Sludge Model no. 2d (ASM2d) for high-temperature EBPR processes suggested that the absence of glycogen in the model contributed to underestimation of PHA accumulation at 32 °C. Here, two modified ASM2d models were used to further explore the contribution of glycogen in the process. The ASM2d-1G model incorporated glycogen metabolism by PAOs (polyphosphate-accumulating organisms), while the ASM2d-2G model further included processes by GAOs (glycogen-accumulating organisms). These models were calibrated and validated using experimental data at 32 °C. The ASM2d-1G model supported the hypothesis that the excess PHA was attributed to glycogen, but remained inadequate to capture the dynamics of glycogen without considering GAOs activities. The ASM2d-2G model performed better, but it was challenging to calibrate as it often led to wash-out of either PAOs or GAOs. Associated hurdles are highlighted and additional efforts in calibrating ASM2d-2G more effectively are proposed.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
3
Citations
NaN
KQI