Microstructure and Mechanical Properties of the ((CoCrFeNi)95Nb5)100−xMox High-Entropy Alloy Coating Fabricated under Different Laser Power

2021 
In this paper, the ((CoCrFeNi)95Nb5)100−xMox (x = 1, 1.5 and 2) high-entropy alloy (HEA) coatings were fabricated on the substrate of 45# steel by laser cladding process under different laser beam power. The influence of laser beam power and molybdenum element content on the microstructure and microhardness of the HEA coatings was investigated. Results show that the HEA coatings were composed of face-centered cubic (FCC) phase and Laves phase, had low porosity, and bonded well to the substrate. The Mo1 coating is composed of cellular dendritic structures and columnar dendritic structures. With the increase of molybdenum element content, the columnar dendritic structures disappeared, the grains are refined, and the arrangement of grains is more compact. The volume fraction of the interdendritic phase under the laser beam power of 800 W was small and irregular. After the laser beam power was increased to 1000 W, the volume fraction of the interdendritic phase was increased. Under the laser beam power of 1200 W, the volume fraction of the interdendritic phase was small again. Therefore, the coatings fabricated under the laser beam power of 1000 W had a larger volume fraction of the interdendritic phase and higher microhardness. With the increase in molybdenum content, the grain changed from columnar dendrite to cellular dendrite, and the microhardness of the coating increased. The characteristics of the laser cladding process, the formation of Laves phase, and the fine grain strengthening lead to high microhardness of the coatings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    1
    Citations
    NaN
    KQI
    []