Aggressive quadrotor flight using dense visual-inertial fusion

2016 
In this work, we address the problem of aggressive flight of a quadrotor aerial vehicle using cameras and IMUs as the only sensing modalities. We present a fully integrated quadrotor system and demonstrate through online experiment the capability of autonomous flight with linear velocities up to 4.2 m/s, linear accelerations up to 9.6 m/s2, and angular velocities up to 245.1 degree/s. Central to our approach is a dense visual-inertial state estimator for reliable tracking of aggressive motions. An uncertainty-aware direct dense visual tracking module provides camera pose tracking that takes inverse depth uncertainty into account and is resistant to motion blur. Measurements from IMU pre-integration and multi-constrained dense visual tracking are fused probabilistically using an optimization-based sensor fusion framework. Extensive statistical analysis and comparison are presented to verify the performance of the proposed approach. We also release our code as open-source ROS packages.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    25
    Citations
    NaN
    KQI
    []