Formation and Properties of a Support Made of Solid Solutions Based on Zirconium Oxide for Single Tubular Solid-Oxide Fuel Cells

2018 
Technique was developed for fabrication of a supporting thin-walled gas-tight ZrO2–Y2O3 electrolyte base of strict configuration for tubular solid-oxide fuel cells. The technique includes a plasma-assisted deposition and vacuum impregnation with salt solutions, followed by a thermal treatment. The properties of plasma-ceramic solid electrolytes based on cubic and tetragonal (t') forms of ZrO2 and the same electrolytes modified with small additions (0.5 wt %) of aluminum oxide were examined. The phase composition, electrical conductivity, thermal expansion, and stability of the materials synthesized were studied. A high stability in time of the tetragonal t'-solid electrolytes was noted, which opens up prospects for their application in solid-oxide fuel cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    4
    Citations
    NaN
    KQI
    []