Optical and TDPAC spectroscopy of Hg(II)-rubredoxin: model for a mononuclear tetrahedral [Hg(CysS)4]2− center

2000 
Rubredoxins possess a well-defined mononuclear tetrahedral tetrathiolate metal binding site, a feature exploited by several investigations to study the spectroscopic characteristics and the coordination chemistry of different metal ions at this binding site. In the present work, Hg(II)-substituted rubredoxin (Rd) from Desulfovibrio gigas has been studied by electronic absorption, circular dichroism (CD), magnetic circular dichroism (MCD), and time differential perturbed angular correlation of γ-rays (TDPAC) spectroscopies. The TDPAC spectrum of 199mHg-Rd at pH 8 exhibits a prevailing nuclear quadrupole interaction (NQI) with a precession frequency of ω1=0.09 Grad/s and an asymmetry parameter η=0, features characteristic of a slightly distorted tetrahedral tetrathiolate metal coordination, i.e, a HgCysS4 center. In addition, three minor populated NQIs have also been detected. They may represent a trigonal HgS3 (ω1=1.13 Grad/s, η=0.21), a digonal HgS2 (ω1=1.34 Grad/s, η=0.20), and a digonal Hg(II) coordination (ω1=1.58 Grad/s, η= 0.18) with unidentified ligands. Since similar studies at pH 2.5 revealed a time-dependent increase of the HgCysS4 population, the low populated sites may represent intermediate Hg(II) complexes formed prior to the generation of the thermodynamically stable structure. The metal-induced absorption envelope of Hg-Rd reveals three distinct transitions with Gaussian-resolved maxima located at 230, 257, and 284 nm, which are paralleled by dichroic features in the corresponding difference CD spectrum of Hg(II)-Rd versus apo-Rd. Based on the optical electronegativity theory of Jorgensen, the lowest energy transition has been attributed to a CysS-Hg(II) charge-transfer excitation. The T d type of metal coordination in Hg-Rd is supported by the presence of an unresolved A-term with a negative lobe at 295 nm in the difference MCD spectrum. These results point to the usefulness of optical and TDPAC spectroscopies for studying Hg(II) sites in other proteins.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    21
    Citations
    NaN
    KQI
    []