Task-dependent variability of Essential Tremor

2017 
Abstract Introduction In Essential Tremor (ET), tremor characteristics and the impairment caused by tremor may vary from task to task. A variability of tremor frequency between postural and kinetic tasks has been proposed in ET, suggesting either multiple central oscillating networks, or peripheral or proprioceptive feedback-mechanisms. This electrophysiological study aimed to assess tremor frequencies and amplitudes in tasks involving postural and kinetic tremor, and compare findings within and across tasks, to delineate physiological differences underlying individually affected manual tasks in ET. Methods 40 ET patients were included in the study. Tremor was characterized clinically, as well as electrophysiologically using accelerometry and digitizing tablet tasks. Tremor amplitude measures and frequencies were extracted for tasks involving kinetic (digital spiral drawing, handwriting), as well as postural tremor. Tremor was compared between and within tasks. Results Digital spiral tremor frequencies were significantly higher compared to postural tremor frequencies, as measured by accelerometry, with a mean difference of >2 Hz (p  Conclusion ET exhibited a frequency variability, which was dependent on activation condition, suggesting neurophysiologically distinct pathways between postural and kinetic tremor. The reduction of tremor amplitudes observed in repeated digital spiral drawing may be explained by a learning effect or adaptation, and should be considered as non-random factor of variability when using spirals in ET to assess effects of interventions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    11
    Citations
    NaN
    KQI
    []