Incorporating the Perception of Visual Roughness into the Design of Mid-Air Haptic Textures

2020 
Ultrasonic mid-air haptic feedback enables the tactile exploration of virtual objects in digital environments. However, an object’s shape and texture is perceived multimodally, commencing before tactile contact is made. Visual cues, such as the spatial distribution of surface elements, play a critical first step in forming an expectation of how a texture should feel. When rendering surface texture virtually, its verisimilitude is dependent on whether these visually inferred prior expectations are experienced during tactile exploration. To that end, our work proposes a method where the visual perception of roughness is integrated into the rendering algorithm of mid-air haptic texture feedback. We develop a machine learning model trained on crowd-sourced visual roughness ratings of texture images from the Penn Haptic Texture Toolkit (HaTT). We establish tactile roughness ratings for different mid-air haptic stimuli and match these ratings to our model’s output, creating an end-to-end automated visuo-haptic rendering algorithm. We validate our approach by conducting a user study to examine the utility of the mid-air haptic feedback. This work can be used to automatically create tactile virtual surfaces where the visual perception of texture roughness guides the design of mid-air haptic feedback.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    3
    Citations
    NaN
    KQI
    []