Efficient C-band single-photon upconversion with chip-scale Ti-indiffused pp-LiNbO 3 waveguides

2019 
Frequency upconversion for single photons at telecom wavelengths is important to simultaneously meet the different wavelength requirements for long-distance communications and quantum memories in a quantum nodal network. It also enables the detection for the telecom “flying qubit” photons with silicon-based efficient single-photon detectors with low dark count (DC) rates. Here, we demonstrate the frequency upconversion of attenuated single photons, using a low-loss titanium-indiffused periodically poled lithium niobate waveguide, pumped with a readily available erbium-doped fiber amplifier in the L-band. Internal and conversion efficiencies up to 84.4% and 49.9% have been achieved, respectively. The DC rates are suppressed down to 44 kHz at 13.9% end-to-end quantum efficiency (including full conversion and detection), enabled by our long-wavelength pump configuration and narrow 3.5-GHz bandpass filtering.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []