Characterizing Demand Graphs for (Fixed-Parameter) Shallow-Light Steiner Network.

2018 
We consider the Shallow-Light Steiner Network problem from a fixed-parameter perspective. Given a graph $G$, a distance bound $L$, and $p$ pairs of vertices $(s_1,t_1),\cdots,(s_p,t_p)$, the objective is to find a minimum-cost subgraph $G'$ such that $s_i$ and $t_i$ have distance at most $L$ in $G'$ (for every $i \in [p]$). Our main result is on the fixed-parameter tractability of this problem with parameter $p$. We exactly characterize the demand structures that make the problem "easy", and give FPT algorithms for those cases. In all other cases, we show that the problem is W$[1]$-hard. We also extend our results to handle general edge lengths and costs, precisely characterizing which demands allow for good FPT approximation algorithms and which demands remain W$[1]$-hard even to approximate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []