Proteomic analysis on the antibacterial activity of a Ru(II) complex against Streptococcus pneumoniae

2015 
Abstract Streptococcus pneumoniae is a Gram-positive pathogen that causes a variety of infection diseases in human. In this project, we determined the antibacterial activity of a Ru(II) complex X-03 against S. pneumoniae in vitro, by comparing its toxicity to host cells A549 and HBE. We performed two-dimensional gel electrophoresis (2-DE)-based proteomic analysis to characterize the protein alterations in S. pneumoniae after treatment with X-03. In total, 50 proteins exhibiting significant differential expressions were identified. RT-PCR was used to confirm the expression differences for selected proteins. Bioinformatics analysis on the proteomic alterations suggested that Ru(II) complex X-03 may obstruct bacterial fatty acid synthesis and oxidation–reduction process to suppress the growth of S. pneumoniae . Metal-uptake experiments revealed that iron-acquisition pathway in the bacterium may be interfered by X-03. These results provide useful clues for further investigations on the mechanism of the antibacterial action of metal compounds. Biological significance The appearance of bacterial strains with broad antibiotic resistance is becoming an alarming global health concern. The development of novel efficient antibacterial compound is urgently needed. In the present study, we found that Ru(II) complex X-03 has a significant antibacterial activity and applied proteomic technology combined with bioinformatics analysis to investigate its antimicrobial mechanism in S. pneumoniae . Many proteins were found to be dysregulated, implicating that X-03 may affect various molecular pathways leading to the inhibition of bacterial growth. Metal-uptake experiments demonstrated that X-03 treatment reduced the iron content in the bacterium, suggesting the interference with iron acquisition systems by the complex. This disturbance in iron acquisition may directly or indirectly induce the proteomic response that involved many pathways. In addition, X-03 could selectively suppress Gram-positive bacteria but execute less cytotoxicity to Gram-negative bacteria, with almost no effect on human cells, implicating its potential to be developed as a specific antimicrobial agent. These results provide useful information for further investigations on the mechanism of the antibacterial action of metal drugs and development of efficient antibacterial drugs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    12
    Citations
    NaN
    KQI
    []