Thermoelectric stack sample cooling modification of a commercial atomic force microscopy

2019 
Abstract Enabling temperature dependent experiments in Atomic Force Microscopy is of great interest to study materials and surface properties at the nanoscale. By studying Curie temperature of multiferroic materials, temperature dependent phase transitions on crystalline structures or resistive switching phenomena are only a few examples of applications. We present an equipment capable of cooling samples using a thermoelectric cooling stage down to −61.4 °C in a 15 × 15 mm 2 sample plate. The equipment uses a four-unit thermoelectric stack to achieve maximum temperature range, with low electrical and mechanical noise. The equipment is installed into a Keysight 5500LS Atomic Force Microscopy maintaining its compatibility with all Electrical and Mechanical modes of operation. We study the contribution of the liquid cooling pump vibration into the cantilever static deflection noise and the temperature dependence of the cantilever deflection. A La 0.7 Sr 0.3 MnO 3-y thin film sample is used to demonstrate the performance of the equipment and its usability by analyzing the resistive switching phenomena associated with this oxide perovskite.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []