Over 50% reduction in the formation energy of Co-based Heusler alloy films by two-dimensional crystallisation

2014 
Crystalline formation of high magnetic-moment thin films through low-temperature annealing processes compatible with current semiconductor technologies is crucial for the development of next generation devices, which can utilise the spin degree of freedom. Utilising in-situ aberration corrected electron microscopy, we report a 235 °C crystallisation process for a Co-based ternary Heusler-alloy film whose initial nucleation is initiated by as few as 27 unit cells. The crystallisation occurs preferentially in the ⟨111⟩ crystalline directions via a two-dimensional (2D) layer-by-layer growth mode; resulting in grains with [110] surface normal and [111] plane facets. This growth process was found to reduce the crystallisation energy by more than 50% when compared to bulk samples whilst still leading to the growth of highly ordered grains expected to give a high degree of spin-polarisation. Our findings suggest that the 2D layer-by-layer growth minimises the crystallisation energy allowing for the possible impl...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    14
    Citations
    NaN
    KQI
    []