Development of a new neutron monitor using a boron-loaded organic liquid scintillation detector

2002 
Abstract A new type of neutron dose monitor was developed by using a 12.7 cm diameter×12.7 cm long boron-loaded organic liquid scintillation detector BC523A. This detector aims to have a response in the wide energy range of thermal energy to 100 MeV by using the H and C reactions to the fast neutrons of organic liquid and the 10 B(n,  α ) reaction to thermalized neutrons in the liquid. The response functions of this detector were determined by the Monte Carlo simulation in the energy region from thermal energy to 100 MeV. Using these response functions, the spectrum-weighted dose function, G -function, to get the neutron dose from the light output spectrum of the detector was also determined by the unfolding technique. The calculated G -function was applied to determine the neutron dose in real neutron fields having energies ranging from thermal energy to several tens of MeV, where the light output spectra were measured with the BC523A detector. The thus-obtained ambient doses and effective doses show rather good agreement with the fluence-to-dose conversion factor given by ICRP 74. This detector will be useful as a wide-energy range neutron monitor.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    11
    Citations
    NaN
    KQI
    []