Liquid Consumption of Wetted Wall Bioaerosol Sampling Cyclones: Characterization and Control

2011 
Advances in microfluidic, lab on chip, and other near-real-time biological identification technologies have driven the desire to concentrate bioaerosols into hydrosol sample volumes on the order of tens of microliters (μL). However, typical wet biological aerosol collector outputs are an order or two of magnitude above this goal. The ultimate success of bioaerosol collectors and biological identifiers requires an effective coupling at the macro-to-micro interface. Liquid collection performance was studied experimentally for a family of dynamically scaled wetted wall bioaerosol sampling cyclones (WWC's). Steady-state liquid collection rates and system response times were measured for a range of environmental conditions (temperatures from 10°C to 50°C and relative humidities from 10% to 90%), liquid input rates, and WWC airflow configurations. A critical liquid input rate parameter was discovered that collapsed all experimental data to self-similar empirical performance correlations. A system algorithm was ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    7
    Citations
    NaN
    KQI
    []