Keratin filaments of mouse epithelial cells are rapidly affected by epidermal growth factor.

1981 
The effects of epidermal growth factor (EGF) on the cytokeratin filaments of cultured murine epithelial cells were studied by the indirect immunofluorescence technique with affinity-purified antibodies. Mouse epithelial cells (MMC-E), grown on glass cover slips, and viewed by immunofluorescence microscopy, showed keratin-specific fluorescence as typical bright perinuclear aggregates corresponding to dense paracrystalline granules seen in electron microscopy. Within minutes after an exposure to EGF, the keratin granules in the MMC-E cells decreased. After 10 min of incubation, the cells had spread fibrillar keratin. Such an effect could not be found after a similar exposure to insulin, dexamethasone, dibutyryl cyclic AMP, or antimitotic drugs. EGF, therefore, has a relatively direct effect on the cytoskeletal organization of cultured epithelial cells. These rapid effects on the keratin filaments may explain the simultaneous EGF-induced ultrastructural surface changes of the cells. EGF may thus function as a regulatory factor in the migration of epithelial cells and in the mobility of their cell membranes. The epithelial cell line, MMC-E, should prove a useful model for studies on the action of EGF on nontransformed epithelial cells in vitro.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    38
    Citations
    NaN
    KQI
    []